Shrinkage Bayesian Causal Forests for Heterogeneous Treatment Effects Estimation
نویسندگان
چکیده
منابع مشابه
Estimation and Inference of Heterogeneous Treatment Effects using Random Forests∗
Many scientific and engineering challenges—ranging from personalized medicine to customized marketing recommendations—require an understanding of treatment effect heterogeneity. In this paper, we develop a non-parametric causal forest for estimating heterogeneous treatment effects that extends Breiman’s widely used random forest algorithm. Given a potential outcomes framework with unconfoundedn...
متن کاملAdaptive Bayesian Shrinkage Estimation Using Log-Scale Shrinkage Priors
Global-local shrinkage hierarchies are an important, recent innovation in Bayesian estimation of regression models. In this paper we propose to use log-scale distributions as a basis for generating familes of flexible prior distributions for the local shrinkage hyperparameters within such hierarchies. An important property of the log-scale priors is that by varying the scale parameter one may v...
متن کاملBayesian Masking: Sparse Bayesian Estimation with Weaker Shrinkage Bias
A common strategy for sparse linear regression is to introduce regularization, which eliminates irrelevant features by letting the corresponding weights be zeros. However, regularization often shrinks the estimator for relevant features, which leads to incorrect feature selection. Motivated by the above-mentioned issue, we propose Bayesian masking (BM), a sparse estimation method which imposes ...
متن کاملDouble shrinkage empirical Bayesian estimation for unknown and unequal variances
In this paper, we construct a point estimator when assuming unequal and unknown variances by using the empirical Bayes approach in the classical normal mean problem. The proposed estimator shrinks both means and variances, and is thus called the double shrinkage estimator. Extensive numerical studies indicate that the double shrinkage estimator has lower Bayes risk than the estimator which shri...
متن کاملRecursive partitioning for heterogeneous causal effects.
In this paper we propose methods for estimating heterogeneity in causal effects in experimental and observational studies and for conducting hypothesis tests about the magnitude of differences in treatment effects across subsets of the population. We provide a data-driven approach to partition the data into subpopulations that differ in the magnitude of their treatment effects. The approach ena...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Graphical Statistics
سال: 2022
ISSN: ['1061-8600', '1537-2715']
DOI: https://doi.org/10.1080/10618600.2022.2067549